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A Conical Beam Finite Element for

E n
Lmareennit | ROtor Dynamics Analysis
Garrett Turbine Engine Company,

Phoenix, AZ The development of finite element formulations for use in rotor dynamics analysis
has been the subject of many recent publications. These works have included the
W. B. Bickford effects of rotatory inertia, gyroscopic moments, axial load, internal damping, and
i shear deformation. Howeuver, for most closed-form solutions, the element geometry
has been limited to a cylindrical cross-section. This paper extends these previous
H. D. Nelson works by developing a closed-form expression including all of the above effects in a

linearly tapered conical cross-section element. Results are also given comparing the
Sformulation to previously published examples, to stepped cylinder representations
of conical geometry, and to a general purpose finite element elasticity solution. The
elimination of numerical integration in the generation of the element matrices, and
the ability of the element to represent both conical and cylindrical geometries, make
this formulation particularly suited for use in rotor dynamic analysis computer
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programs.

Introduction

Over the last several years, many investigators have ex-
tended the capability of rotor dynamics analysis using finite
elements. Early formulations, such as Nelson and McVaugh
[1], developed a Rayleigh beam theory finite rotating shaft
element which included the effects of translational and
rotatory inertia, gyroscopic moments, and axial load. This
development was subsequently generalized by Zorzi and
Nelson [2] to include the effects of internal viscous and
hysteretic damping. Later, Nelson [3] added shear defor-
mation to the Rayleigh beam theory to develop a Timoshenko
beam element, which was then extended by Ozguven and
Ozkan [4] to include the internal damping model of Zorzi and
Nelson. All of these formulations considered the axial cross-
section of the element to be cylindrical, which allows area and
inertia to be considered constant with respect to length. The
motion of these elements was represented by eight degrees of
freedom: two translations and two rotations at the element
ends.

Modern rotor systems utilize geometry which is usually far
from being uniform as a function of length. These cross-
sectional changes are mainly accommodated by modeling the
rotor as a collection of stepped cylinders. For conical cross-
sections, the errors introduced by the stepped cylinder ap-
proach may be quite large.

As a result, Rouch and Kao [5], developed a linearly
tapered Timoshenko beam element for use in rotor dynamics.
This element was based upon the work of Thomas, Wilson,
and Wilson [6], who determined that the most optimum
representation of the shear deformation was to add two
additional coordinates at each element end, resulting in twelve
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degrees of freedom per element. The Rouch and Kao element
extended the earlier formulation by including gyroscopic
effects and representing the area and inertia as second and
fourth order polynomials as a function of radius. The element
matrices were obtained by numerical integration, and as such,
no closed form expressions were presented. It was also in-
dicated that the additional shear deformation coordinates
could be condensed out of the element or system equations
without significant loss of accuracy. Later, To [7] developed
closed form polynomial mass and stiffness expressions for a
linearly tapered Timoshenko element, again using the twelve
degree of freedom representation of Thomas, Wilson, and
Wilson.

This paper extends the linearly tapered Timoshenko beam
theory element by using the kinematic representation of
Thomas, Wilson, and Wilson to develop closed form
polynomial expressions for element matrices suitable for use
in finite element rotor dynamics computer programs. The
element includes the effects of translational and rotatory
inertia, gyroscopic moments, axial load, internal viscous and
hysteretic damping, and mass center eccentricity. System
equations of motion are also presented in both fixed and
rotating reference frames. Numerical examples are given
comparing the use of the conical element to a previously
published test case, to stepped cylinder representations, and to
a general purpose finite element elasticity solution.

Coordinates and Shape Functions

A typical axial cross-section of a linearly tapered finite
element is shown in Fig. 1. Each end of the element is
associated with an inner and outer radius, denoted by rand R,
with the subscripts / and j referring to the left (s =0) and right
(s=/) ends of the element, respectively. Defining a non-
dimensional position coordinate £, equal to the ratio s//, the
inner and outer radii may be expressed as

OCTOBER 1985, Vol. 107/ 421



—

[ d

f————t- y

Fig.1 Conical element axial cross section geometry
r=r(-8+ri (1(a)
R = R(1-9H+R;¢ 1(d)

Representing the ratios of inner and outer radii on each end as
p and o, which are equal to r;/r; and R;/R; respectively,
allows equations (1) to be rewritten

r = ril+(-1%§ (@)
R = Ri(1+(c—-1)§) Qb))

Using equations (2) in a cross-sectional area equation results
in the following second order polynomial expression

A=m(R* 1) =A;[l + o, § + o £7] 3
where the coefficients are
A = w(R>~r?)
a; = 2[R (o—1)—r*(o—DI/(R?*—r?)
o, = [RA(o=1)*=r2(o—DI/(R*~1?)

Similarly for cross-sectional inertia, the use of equations (2)
results in a fourth order polynomial expression of

I=a(R*—r*)/4=L[1+8,£+06,8% + 8,83 +68,¢%] 4
where the coefficients are
I,' = 7T(Ri4 —r,~4)/4

Nomenclature

Z(w)

Fig.2 Kinematic relationships between element degrees of freedom

& = A[RAo-D—r*o—DI/(R*—r*)

8, = 6[RAo—1?—r*(o— DV (R —r)
85 = 4R (0—1) ~rfo— 1’V (R 1)
8 = [R*Mo—-1D*—rfo- D1/ (R ~1*)

The primary coordinate reference system is illustrated in
Fig. 2. The (XYZ) triad is a fixed reference with the X-axis
coinciding with the undeformed centerline of the element.
Although not shown, the (xyz) triad is a rotating reference
with the x-axis coincident with X, and the y- and z-axes
rotating at a uniform rate w about the X-axis. The element is
considered to be initially straight and is modeled with twelve
degrees of freedom: two translations, two rotations, and two
shear deformations at each end-point of the element. The
diametral cross-section of the element is considered to be
circular. )

The translation of the element, neglecting axial motion, is
given by the two displacements (v,w), and the shear defor-

= area polynomial coefficient

inertia polynomial coefficient

element end inner and outer radii ratio

mass per unit volume -

location of mass center

spin speed

= whirl speed

= whirl ratio, &/ w

ny,my = internal viscous, hysteretic damping coefficient
internal damping matrix

»®

m
> € DeirE o ™R
I

[y] = translation dependent rows of shape function
matrix
[¢] = rotation dependent rows of shape function matrix
[x] = shear dependent rows of shape function matrix
¢ = ratio of axial position to element length, s//
6 = rotational displacements
B = shear displacements
s = axial position along element
! = length of element
r,R = inner, outer radius of element end
A = element area (function of axial position)
I = element inertia (function of axial position)
E = element elastic modulus (constant)
Ep = potential energy
E, = kinetic energy
E, = dissipation function
G = element shear modulus (constant)
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k = transverse shear form factor (constant)
P = element axial load (constant)
t = time
u,v,w = translational displacements in X, Y, and Z
directions
{p} = element end displacement vector, rotating frame
coordinates
{g} = element end displacement vector, fixed frame
coordinates
{Q} = element unbalance force vector
[Kz] = bending stiffness matrix
[Ks] = shear stiffness matrix
{K4] = axialload stiffness matrix
[Kc] = circulation matrix
[M;] = translational mass matrix
[Mr] = rotatory mass matrix
[G] = gyroscopic effect matrix
[N] = transformation matrix
[R] = fixed to whirl frame transformation matrix
Subscripts
ij = left and right element ends
1,2, .. = particular term in a matrix or polynomial ex-
pression
Superscripts

, . = position, time differentiation

]
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Fig. 3 Deformed element axial cross-section (X-Y plane)

mation contribution is expressed as (8,,8,). The rotation of
the cross-section is defined by the relationships

b, = —-w-5, (5(@))
6, = vV+3, (&)

as shown in Fig. 2. Note that the sign of 0§, is set negative in
order to obey kinematic constraints. The deformed shape of
an element in the X-Y plane is shown in Fig. 3, which
illustrates the additional rotation of the cross-section due to
shear.

The translation of a point internal to the element relative to
the end-point displacements is approximated by the relation

v(s,t)
{ } = [ {a®} (6)
w(s,?)

with the components of [] given in the Appendix. The in-
dividual shape functions are obtained by assuming the
transverse displacement varies cubically as a function of
length. Using equations (5) and (6), and assuming the shear
deformation varies linearly with length, the rotation of the
cross-section is given by the relation

6,(s,0)
{ } = [ {aq(®)} @)
6.(s,%) ’
and the deformation of the element due to shear is expressed
by
B, (s,1)
= [x(9lfg®} (®)
B.(s,0)

with the components of [¢] and [x] given in the Appendix.
The order of the coordinates in the end-point displacement
vector was chosen as

{q} = [ Ui’wi99yi’0zi’vj,Wj’eyj,ezjaﬁyiiﬁzi96yj967j } T (9)
in which the first eight terms are identical to those in [1-4],
and the last four are the shear deformation contributions. The

order of coordinates in equation (9) was selected to facilitate
condensation of the shear deformation coordinates.

Element Equations

The element equations can be derived through the use of
Lagrange’s equations. As such, quadratic expressions for
potential energy, kinetic energy, dissipative functions, and
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generalized forces are required, and will be developed in
separate sections below.

Potential Energy. Using Timoshenko beam theory, the
differential potential energy can initially be written as a
combination of elastic bending, shear, and axial load ex-
pressions, with the effects of internal damping on bending
strain energy to be included separately. In terms of the
element internal degrees of freedom, the potential energy is

2dEp=EI(0,% + §,"2)ds + kGA(B,* + B,2)ds
+ P2+ w?)ds (10)
Equation (10) may be integrated over the length of the element

to obtain an expression for potential energy in terms of three
discrete stiffness matrices as

2Ep={q}T([Kp] +[Ks]+[KaDiq) 1

in which [Kj] is the bending stiffness matrix, [K] the shear
stiffness matrix, and [K,] the axial stiffness matrix. The
individual matrices are obtained from equations (6, 7, 8) as

!

K51 = | BrI17I971ds (12
/

K1 = | kGA@DIT s (12(6)
!

K = | P17 (12(e)

The components of each of the three stiffness matrices,
equations (12), are given in the Appendix. Each term in the
bending and shear stiffness matrices, [Kz] and [K], are
fourth and second order polynomials, respectively, due to the
variation of inertia and area with length, equations (3) and
(4). Axial load is assumed constant as a function of length,
thus each term in the axial stiffness matrix is a single value of
order zero.

Kinetic Energy. The kinetic energy expression is a
combination of translational and rotational components. In
terms of the element internal degrees of freedom, the dif-
ferential kinetic energy may be written as

2dEg = pA(0? + whds +1,(0,% + 6,2)ds +I1,9*ds — Q1,,0,6,ds
(13)

Equation (13) may be integrated over the length of the element

to obtain the complete kinetic energy of the element. In terms

of discrete matrices, the energy expression may be represented
by the following relation

2Ex =g} T(IM7)+MzD {4} +Q{q) T[Gl{g) 14)
in which [M7] is the translational mass matrix, [Mp] the
rotatory mass matrix, and [G] the gyroscopic matrix. The

individual matrices are defined for the purpose of forming the
Lagrangian, and are obtained from equations (6, 7, 8) as

[ . .

7] = | wa@WITIGs (15(a)
i

Mel = | wlI17161ds (15(6)
i

(6] = |, 26 BT INg1ds (15

with ;= pl(§), I, =2ul(£), and [N] a 2x2 skew symmetric
transformation matrix as defined in the Appendix. The
components of each of the matrices in equation (15) are also
given in the Appendix. Bach term is a second or fourth order
polynomial.
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Internal Damping - Bending Potential Energy and
Dissipation Function. The incorporation of internal
damping uses the same type of linear models as [2].
Proceeding from the constitutive relationship between axial
stress to axial strain, the differential bending energy and
dissipation functions for the Timoshenko element with in-
ternal damping are defined as

2dEp = EIE)(q)T['17 {[nl¢’ 1 +nyINIT (9]} {q}ds(16(a))
2dEp, = nyEIE)(4) 7917 (¢°]{¢)ds 16()
with the components of [y] given in the Appendix. These
expressions differ from those presented in [2] due to the
relationship between bending and shear as given by equations

(3.

Equation (16(a)) may be expanded and rewritten as

nyg+1

s 0 B s
+0n,] (g} TI01INIT 0] (g} ds

2dEp = EI§)

+ BI] 2
Jl + 771.12
and then may be integrated along with equation (16(d)) over
the length of the element to form matrix expressions for the
bending potential energy and dissipation functions as

26, = L Tk
\/1+77H2
2 v an} (@)K g) (17(@))
\/1+T]H2

2Ep = ny{4)TIKpl{4) 17(5))
in which [K(] is the internal damping circulation matrix,
obtained from equations (6, 7, 8) as

/

[Kel = || E1061 7N T1971ds (18)
which is skew symmetric and each term is a fourth order
polynomial. The components of [K,] are given in the Ap-
pendix. In equations (17), the matrix [Kp] is the bending
stiffness matrix given in equation (12(4)). Thus the in-
corporation of internal damping results in additional terms in
the potential energy expression as well as the creation of a
dissipative function. Note that if [¢’] = [N] ["’] as in [2], the
equations (16) could be transformed to the same expression

for bending energy and dissipation functions as contained in
[2].

Generalized Forces. The only generalized force included
in this element formulation is due to distributed unbalance
force. For an element with mass center eccentricity (e(s), {s)),
the equivalent unbalance force is represented by

{Qr)={Qc}cosQt+ { Qg }sinQt
in which the force components are

19

/ e(s)

{Qc) = QZSOuA(S)[t//]T ds (20(a))
{(s)
! =)

{QOs) = 9250 pABT ds (20(1))
e(s)

using a linear distribution for mass unbalance over the
element as

€s) = (1-§+¢é 21(a))
a9 = GU-9H+5¢ 21(b)

the equivalent unbalance force may be obtained from
equation (19) by using equations (21) in the integral ex-
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pressions (20). The unbalance force vector components { Q]
and { Qg are given in the Appendix.

It can be shown that the element matrices given in equations
(12), (15), and (20) are equivalent to the same expressions
given in [3] by assuming a uniform cylindrical geometry and
reducing the matrices from a size of 12 x 12to 8 x 8 through
static condensation.

System Equations

In the fixed reference frame (X'YZ), the system equation of
motion may be assembled by the use of Lagrange’s equations
from the expressions developed in equations (11), (14), (17),
and (19). The resulting equation is of the form

(M7l + [MrD{G} + (ny[Kp] — QUG { g}

+{ s ikl )

[Ks) + K1+ (1,04

={Qr} 22)

All the matrices contained in equation (22) are symmetric
except for the gyroscopic matrix [G] and the circulation
matrix [K].

For isotropic systems, it is convenient to use the rotating
reference frame (xyz). The transformation between fixed and
rotating frame coordinates is given by

{a)=[Rl{p) 23)

where [R] is a transformation matrix whose components are
given in the Appendix. Use of the transformation equation
(23) in the fixed frame equation of motion (22),
premultiplying by [R]7, and defining a whirl ratio (\=Q/w),
gives the rotating or whirl frame equation of motion as

(M 7]+ M) (B} + (ny[K s+ ([M7] + (1 - WG]} (P}

1
+{ [+ K]+ K]
\/1 + 7]H2
+ [Kal+onp(A— DIK(]

- X ([M7]+(1 _2>\)[MR])} p}=1{Qc} (24)
in which the skew symmetric matrix [MT] is given by the
expression

!

[Mr] =2S0 rAG T IN[Y1ds (25)
and the unbalance force vector {Q.] is given by equation
Q0(a)).

For a rotor composed of elements formulated in terms of
fixed reference coordinates by using equation (22) or in terms
of a whirl reference system through the use of equation (24),
the system will be composed of an assemblage of individual
element matrices, each with size 12x 12, This size may be
retained throughout the computation, or may be reduced
using a static condensation algorithm as outlined in [1], at
either the element or system level.

In this study, the elemental reduction approach was used,
and each 12 X 12 element matrix was reduced to an equivalent
8 x 8 prior to assembly into the global system matrices. This
technique was evaluated in [5] and found to result in no
significant loss of accuracy. Computationally, this approach
is identical to that used for subelement condensation in [1],
and as such, the conical element may be treated with the same
reduction algorithm. The condensation of element matrices
prior to assembly in the global system matrices also facilitates
the addition of discrete support connections and lumped
masses.

The calculation of whirl speeds or unbalance response uses
the same techniques as outlined in {11, and as such, will not be
repeated. The addition of internal damping results in
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Table1 Natural frequencies (Hz) of tapered chimney {6]

Five Elements

Ten Elements

Twenty Elements

Mode Thomas Current Thomas Current Thomas Current
1 0.5097 0.5092 0.5096 0.5092 0.5096 0.5092
2 2.6937 2.7024 2.6920 2.6928 2.6918 2.6904
3 6.5411 6.6725 6.5090 6.5454 6.5072 6.5128
4 11.355 11.800 11.073 11.262 11.062 11.105
5 17.748 17.583 16.070 16.627 16.019 16.162
6 24,109 33.988 21.338 22.540 21.162 21.501
7 38.902 41.310 26.882 28.941 26.381 27.039
8 40.756 46.413 32.790 35.605 31.589 32.700
9 45.333 49.652 38.963 42.040 36.712 38.380
10 49.554 51.736 40.607 43.209 40.380 41.192
3 CONE ANGLE
g + = 15 DEG
«° - 0 = 30 DEG
SHAFT CROSS—SECTION N o + = 45 DEG
X5 A = 60 DEG
g 8-
£ -
o 8-
g -
STEPPED CYLINDERS E 8 ]
5 w
g T T T T T T

Fig.4 Typical stepped cylinder representation of conical geometry

parametric terms in the rotating frame whirl speed
calculation, which can be accommodated through the use of
iteration procedures. In practice, these terms are usually
ignored and only undamped natural frequencies are
calculated in whirl frame analysis.

Numerical Examples

Three examples are provided to illustrate the accuracy and
use of the conical element. The first is a test case, originally
published by Thomas, et al. [6], in which conical elements
were used to calculate the natural frequencies of a tapered
chimney. Using five, ten, and twenty conical elements, the
results from [6] and those obtained from the present for-
mulation are compared in Table 1 for the first ten modes.

As the results indicate, the comparison is quite good, with
the present formulation frequencies, in general, slightly
higher than those obtained in [6]. Tt was expected that the
frequencies should differ, as the inertia and area represen-
tations used in [6] were linear rather than fourth and second
order polynomials as in equations (3) and (4). For reference,
the frequencies obtained with the present formulation are
practically identical to those presented in [5], being con-
sistently larger by a maximum of .35 percent.

The second example compares the use of the conical
element with stepped cylinders. As Fig. 4 illustrates, the
stepped cylinder representation is used with common rotor
dynamics programs to simulate conical structures. For the
comparison, the stiffness and natural frequencies were
evaluated for a cantilevered cone using from one to eight
steps, referred to as subelements as per [1]. Cone angles in-
vestigated were 0, 15, 30, 45, and 60 degrees, with the
thickness of the cones adjusted for angle, holding the normal
thickness to 1.0 cm and the mean radius at the fixed end to 2.0
c¢m, Table 2 lists the properties of the cones used in this
example.

For a single element cantilever cone, fixed at the small end,
the stiffness matrix can be reduced to a 2 X 2 matrix. The three
terms in the resulting matrix may be compared for the stepped
cylinder versus conical element formulations. Note that for
zero cone angle, the conical element degenerates to a cylin-
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Fig. 5 Single element stepped cylinder versus cone stiffness com-
parison, term K {4
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Fig. 6 Single element stepped cylinder versus cone stiffness com-
parison, term K42
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Fig. 7 Single element stepped cylinder versus cone stiffness com-
parison, term Kop

8.00

drical formulation as in [3]. In Figs. 5, 6, and 7, the ratio of
the stiffness term for the stepped cylinder (Kgc) to the conical
element (K.) is displayed for up to eight subelements. For
terms K, and K, translational and translational-rotational
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Fig. 9 One element stepped cylinder versus cone frequency com-
parison, first mode

Table2 Conical element test case

! = 10.0cm E = 20.0x10'° N/m?

» = 8304 kg/m3 G = 7.6923%10'% N/m?

k = .900

Cone Angle R; r; R; r;

0 2.500 1.500 2.500 1.500
15 2518 1.482 5.197 4.161
30 2.577 1.423 8.351 7.197
45 2.707 1.293 12.707 11.293
60 3.000 1.000 20.321 18.321

coupling, the comparison results in a family of curves, in-
creasing in value with increasing cone angle. The rotational
term K, displays mixed results. In general, the comparison
indicates that there is no optimum number of subelements
that may be used to represent the conical geometry.

The stiffness terms predicted by the conical element were
also compared to those predicted by a general purpose finite
element computer code, ANSYS [8]. The basic geometry as
given in Table 2 was discretized into 80 axi-symmetric
elements. Using cantilever boundary conditions, the resulting
displacements were used to calculate an equivalent 2 X 2 single
element stiffness matrix. The comparison of the terms in the
stiffness matrix is illustrated in Fig. 8 as the ratio of the beam
element stiffness term (Kjzp) to that of the finite element
(Krp).

As the figure indicates, the translational coefficient (K,;)
slightly underestimates the elasticity values. For the cross-
coupling (K,) and rotatory (K,,) coefficients, the beam
theory significantly overestimates the stiffness as given by the
elasticity model, due to the inability of the beam theory to
accommodate any ovalizing effects for increasing cone angles.
It is somewhat surprising, however, that the deterioration in
the agreement between the K, and K, terms is so immediate
and rapid with any nonzero cone angle.
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Fig. 10 One element stepped cylinder versus cone frequency com-
parison, second mode
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Fig. 11 Two element stepped cylinder versus cone frequency com-

parison, first mode
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Fig. 12 Two element stepped cylinder versus cone frequency com-
parison, second mode

An additional comparison, that for natural frequencies of
the first two modes, is displayed in Figs. 9-12. In these
figures, the ratio of the natural frequency of the cantilevered
cone obtained by the use of stepped cylinders (wgc) to that
calculated by the conical element (wc) is presented for up to
eight subelements. Both one and two elements were used to
calculate the frequencies, to illustrate the effect of refinement.
As the figures illustrate, the ratio of natural frequencies is
poor unless several subelements are used. It is interesting to
note that the second mode frequency is always overpredicted
using stepped cylinders. The comparison also indicates that
no optimum number of stepped cylinders adequately predicts
the natural frequencies of both modes for the cone angles
surveyed.

Summary and Conclusions

The equations of motion for a conical beam finite element
have been developed from Timoshenko beam theory, and
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include the effects of translational and rotational inertia,
gyroscopic moments, bending and shear deformation, axial
load, and internal damping. Both fixed and rotating frames of
reference system equations are presented.

The resulting element formulation was compared to a
previously published test case, to stepped cylinder
representations, and to a finite element elasticity solution.
Good agreement was obtained with the test case. For the
stepped cylinders, no optimum number of subelements was
found to represent both stiffness and natural frequencies of
the cantilever cone example. The elasticity solution disclosed
the inability of the beam formulation to account for ovalizing
effects for nonzero cone angles.

The conical geometry results in closed-form polynomial
expressions for the element matrices. These matrix
representations are easily incorporated into finite element
rotor dynamics computer programs with minimal increases in
computation time and storage requirements. As the element
will degenerate to an equivalent cylinder, this formulation can
replace rather than add to existing code.

Use of the conical element greatly enhances modeling
flexibility. When confronted with conical geometry, the
analyst is usually forced to represent the cross-section with a
series of stepped cylinders or run independent conical section
analyses. Use of the conical element eliminates this process,
resulting in a decrease in modeling time and improving the
rotor representation.
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APPENDIX
Translation Shape Function [¢], equation (6)
wio [P0 0 ¥ 0 0 e 0 sy 0
0 ¥ =¥ 0 0 Y3 -y, O 0 -y 0 -y
where
Vo= 1-382 4280
Yo = ME-282+8) ]
Vs = 3§22
Yy = U—E+8)
Rotational Shape Function [¢], equation (7)
0] 0 ¢ ¢ 0 0 -¢ ¢3 0 O -¢, 0 —
¢ 0 0 ¢ ¢ 0 O & ¢, O ¢, O
where
¢ = 6(£-£7)
¢ = 1-4f+382
¢; = —2£+3¢
by = 3¢-3¢2
Shear Deformation Shape Function [x], equation (8)
000 0O0O0O0OO0ILYX 0 x O
Ixi=
000 0O0O0O0TO0OTOQ x1 0 x
where
x1 = 1-¢§
X2 = &

General Notes on Presentation of Element Matrices

The next 9 element matrices are given in array format, that is, each nonzero term will be denoted by (ir, ic), where ir is the
row and Jc the column in the matrix. This notation has been adopted for clarity, as each matrix term is a polynomial, except for
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[K 4], the axial stiffness matrix. All matrices are of size 12x 12, and any term not explicitly defined is zero. Since all of the
matrices are either symmetric or skew symmetric, only the lower triangular is given, with the type of symmetry given for each
matrix.

Element Bending Stiffness Matrix [K ], equation (12(a)) (sym)
K=EL/1
(1,1) = K(60480 + 302405, + 241926, + 211685, + 190085,)
4,1) = KI(30240 + 100808, + 70565, + 60488, + 54725,)
G,1) = (6,2)= -(2,2)= —(5,5)= —(6,6)= —(1,1)
(8,1) = KI(30240+201606, + 171366, + 151208, + 135365,)
(9,1) = —KI(30240 + 151206, + 120965, + 105846, +95044,)
(11,1) = (10,2)=(12,2)= —(9,5)= - (11,5)= — (10,6) = — (12,6)=(9,1)
3,2) = 54)=-(6,3)=-4,1D)
7,2y = 8,5=-(7,6)=—(8,1)
(3,3) = (4,49)=K/*(20160 + 50405, + 26885, + 20168, + 17285,)
(7,3) = (8,4)=KI/*(10080 + 50403, + 43685, + 40328, + 37448,)
10,3) = K (15120 + 50408, + 35285, + 30245, +27368,)
(12,3) = -09,4)=—(11,4)=(10,3)
(7,7 = (8,8)=K/?(20160 + 1512068, + 127685, + 110888, + 97925,)
(10,7) = K/*(15120+ 100806, + 85685, + 75608, + 67685,)
(12,7) = —(9,8)=—(11,8)=(10,7)
(9,9) = KP(15120+ 75608, + 60486, + 52928, +47528,)
(11,9) = (10,10)=(12,10)=(11,11)=(12,12) =(9,9)

Element Shear Stiffness Matrix [K], equation (12()) (sym)

K=kIGA,/5!
9,9) = (10,10) = K(40+ 100, +4ary)
(11,9) = (12,10) = K20+ 10a, + 6c,)
(11,11) = (12,12) = K(40+30c, + 24a,)

Element Axial Stiffness Matrix [K 4], equation (12(¢)) (sym)

K=P/30]
Lh=-6H= @22= —-(62)= (5= (66 = 36K
@4hH= @)= 6= ©5)= 1,5)= (7,6 = (10,6) = (12,6) = 3K/
Gn= (L) = @2 = (2= (102 = (122 = 3.4 = @5 = -3K/
(3= (10,3) = (@44 = -4 =-(114)= (1,7 = (12,7) = 4K
8,8 = 99 = (11,9 = (10,10) = 11,11) = (12,12) = 4K
0.8) = (11,8) = =(7,3) = -(12,3) = -B,4) = —(10,7) = ~(12,10) = KP

Element Translational Mass Matrix [M ], equation (15(a)) (sym)
M=uA;l/9

(1,1) = (2,2)=M(134784+ 31104, + 10944 c,)

@4, = -9,1)=-3,2)= —(10,2) = MI(19008 + 6048, +2448¢,)

(5,1) = (6,2)=M(46656 + 23328, + 13248,)

(11,1) = (7,2)=(12,2) = —(8,1) =MI(11232 + 5184, +2736c,)

(3,3) = M (3456 + 1296, + 576a;)

(10,3) = (4,4)=—-(9,4)=(9,9)=(10,10)=(3,3)

6,3y = —(5,4)=0(9,5)=(10,6)= — MI(11232 + 6048c¢; +3600c,)

(7,3) = —~MIP(2592+1296q, + 720w,)

(12,3) = 8,4)= -(15,4)=(10,7)= - (9,8)=(11,9)=(12,10)=(7,3)

(5,5) = (6,6)=M(134784 + 103680, + 83520cr,)

(8,5 = —(11,5)=—(7,6)= —(12,6) = — MI(19008 + 12960c, + 9360c,)

(7,7) = MIP(3456+2160c; + 1440c,)

(12,7) = 8,8)=—(11,8)=(11,11)=(12,12) =(7,7)

428 /Vol. 107, OCTOBER 1985 Transactions of the ASME




Element Whirl Frame Translation Mass Matrix [M 71, equation (25) (sk-sym)

2,1) =
@1 =

(6,1)
7.0
4,3)
(5,3)

8,3) =

(14,3)

(7.4) =

(7,3)
8.7
(10,9

M= pA,1/9!
(6,5)=M(269568 + 62208, +21888c,)
(10,1) = (4,2) = — (9,2) = — MI(38016 + 12096, + 4896cx,)
—(5,2) = M(93312 + 46656, + 26496,)
(12,1) = (8,2) = — (11,2) = MI(22464 + 103680, + 5472a,)
—(9,3)= —(10,4) = (10,9) = MI2 (6912 + 2592, + 1152cx,)
(6,4)= —(10,5) = (9,6) = MI(22464 + 12096, + 72000:,)
(12,9)= — MI*(5184 + 2592« + 1440cs,)
MP (5184 + 259201, +1440c,)
(12,4)=(9,7) = (10,8) = (11,10) = (11,3)
(12,5)=(8,6) = — (11,6) = MI(38016 + 25920, + 18720cr,)
—(11,7) = — (12,8) = (12,11) = MI2(6912 + 4320cx, + 2880cx,)
MI(6912 +2592c, + 1152a,)

Element Rotatory Mass Matrix [M], equation (15()) (sym)

(1,1

G,D
CHY;
o.n
ann
(3.2
(7,2)
(3.3)

(7,3) =

(10,3)

(12,3) =
7,7 =

(10,7)
(12,7)

9,9
(11,9

M= pul,/9

= M(435456 + 2177285, + 12441665, + 777605; + 518406,)
@41 =

MI(36288 + 362885, + 259205, + 181445, + 129608,
6,2)= —(2,2)= —(5,5)= - (6,6)= — (1,1)

MI(36288 — 103685, — 129605, — 129608,,)

— MIQ217728 + 1088648, + 622085, + 388805, +259205,)
(10,2)=(12,2) = — (9,5) = — (11,5) = — (10,6) = — (12,6) = (9,1)
—(6,3)=(5,4)= —(4,1)

8,5 =~ (7,6)= —(8,1)

(4,4) = MI2 (48684 + 120965, + 69126, + 47525, + 34568,)

(8,4) = — MI2(12096 + 60485, + 51848, + 47528, +43208,)
MI2(18144 + 181445, + 1296065, + 90725, + 64806,

9,4)= —(11,4) = (10,3)

(8,8) = MI2(48384 + 362885, + 311048, + 280808, +259208,)
M2 (18144 — 51845, — 64805, — 64808,)

—(9,8)= —~(11,8)=(10,7)

= MI/?(108864 + 544325, + 311045, + 194408, + 129608,)

(10,10)=(12,10)=(11,11) =(12,12) = (9,9)

Element Gyroscopic Matrix [G], equation (15(c)) (sk-sym)

@D
G.D
(G
(7.0
(10,1)
(12,1)
4.2)

8,2) =
= MIP(96768 +241928, + 138248, + 95048, +69128,)

4.3)

8.3 =

9.3)

(11,3) =

@®,7
©.7

M= ul,/9
M(870912 + 4354565, + 2488325, + 1555208, + 1036805,)
— MI(72576 + 725765, + 518406, + 362885, +259205,)
=(5,2)= - (6,5=-(2,1)
MI(—172576 + 207368, + 259208, + 259208,
— MI(435456 + 2177285, + 1244166, + 777606, + 518408,)
~9,2)= —(11,2) = — (10,5) = — (12,5) = (9,6) = (11,6) = (10,1)
(5,3)=(6,4)=(3,1)
—(7,5)=—(8,6)=(7,1)

—(7,4) = — MI>(24192 + 120965, + 10368, + 950448, + 86404,)
— MI*(36288 + 362885, + 259200, + 181445, + 129608,)
(10,4)=(12,4)=(9,3)

MI%(96768 + 725768, + 622085, + 561608, + 518405,)

M1 (—36288 + 103685, + 129605, + 129603,)
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(11,7) (10,8)=(12,8)=(9,7)

(10,9) = MI?(217728 + 1088645, + 622085, + 388806, +259206,)
(12,9) = —(11,10)=(12,11)=(10,9)
Element Circulation Matrix [K ], equation (18) (sk-sym)
K=EL/TP
(2,1) = —K(60480+302408, +241928, + 211686, + 190086,)
(3,1) = KI(30240 + 100808, + 70565, + 60485, + 54725,)

6,1) = —(5,2)=—-(6,5)=~(2,1)
(7,1) = K(30240+201606, + 171365, + 151208, + 135365,)
(10,1) = KI(30240 + 151205, + 120965, + 105845, + 95048,)

12,1y = -9,2)=-(11,2)=—-(10,5)= —(12,5)=(9,6)=(11,6)=(10,1)
4,2) = (5,3)=(6,49=(3,1)
®2) = —-(7,5=-8,6)=(7,1)
(4,3) = —K/*(20160+ 50406, + 26885, + 20165, + 17285,)
(8,3) = —(7,4)= —KI*(10080 + 50408, + 43688, + 40325, +37446,)

9,3) = KI2(15120+ 50408, + 35285, + 30248, +27366,)
(11,3) = (10,4)=(12,4)=(9,3)

(8,7) = —KI*(20160+ 151208, + 127685, + 110888, +97926,)

(9,7) = KIP*(15120 + 100808, + 85685, + 75608, + 67686,)
15,7 = (10,8)=(12,8)=(9,7)
(10,9) = —K/2(15120+ 75608, + 60488, + 52928, +47528,)
(12,9 = —(11,100=(12,11)=(10,9)

Element Transformation Matrix [N], equations (15¢, 18, and 25)
0 -1
[N =
1 0
Element Internal Damping Matrix [9], equation (16a)

1 (I +ng) Ny
[ﬂ]:J 3
l+9y —nn  (L+1g)

Element Fixed to Whirl Frame Transformation Matrix [R], equation (23)

For the 12x 12 element matrices, [R] is a block diagonal matrix composed of six 2 x2 matrices each equal to coswf[l] +

sinw?[N].
Element Unbalance Force Vectors { O} and { Qg }, equation (20)

M=Q?uA,/7!
{Qcl = {Qsn)=Me;(1764 +420c; +1560,) + Me (756 + 3360, + 1560:,)
{Qa) = ~(Qa)=M{(1764 + 4200, + 1560,) + M{;(756 + 3360 + 156a,)
{Qc3) = —MIG(252+ 84 +360,) —MIS;(168 + 84 +480x,)
{Qcu} = Mie; (252 + 840 +360a,) +Mle;(168 + 84c; +48c,)
{Qcs} = {Qss) =Me;(756 + 4200, +2640a,) + Me; (1764 + 1344, + 1080c,)
{Qcsl = —{Qss}=MG(756 +420a; +264a,) + M{ (1764 + 13440t + 1080c,)
{ = MI{ (168 +84ay +48a,) + MI{ (252 + 168c; +120a,)
{ = —Mie;(168 +84cr; +48ay) ~ Mle;(252 + 168cx; + 12001,)
{ = {Qu}={Qs0}=—{Qx)

{Qci0) = {Qs4}=“[QS9}={ch}
{Qci = [Qm}:{an]:—[ch}
{Qci} = (st}=—{Qs11}={Qc7}
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